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The extended Navier-Stokes theory accounts for the coupling between the translational and rota-
tional molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies
and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in
molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecu-
lar chlorine are performed for three different state points. In general, the theory captures the behavior
for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and
for molecular fluids with small moment of inertia like chlorine, the theory predicts that the lon-
gitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which
is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector
and frequencies. To account for the correlations at these scales, we derive a phenomenological ex-
pression for the frequency dependent rotational viscosity and wavevector and frequency dependent
longitudinal spin viscosity. From this we observe a significant coupling enhancement between the
molecular angular velocity and translational velocity for large frequencies in the gas phase; this is
not observed for the supercritical fluid and liquid state points. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4774095]

I. INTRODUCTION

It has been shown that for atomic fluids the Navier-Stokes
equation correctly predicts the decay of the transverse ve-
locity autocorrelation function for wavelengths down to two
atomic diameters.1, 2 For smaller wavelengths, the decay can
be described phenomenologically by introducing a wavevec-
tor dependent viscosity, which is also frequency dependent
and defined through the Navier-Stokes equation itself.1, 3, 4

This formalism can be termed generalized Navier-Stokes
(GNS) theory since it involves a generalized Newtonian con-
stitutive relation between the fluid stress and strain rate. Nat-
urally, such a generalized theory can be extended to study
other frequency and wavevector dependent transport phenom-
ena such as heat conductivity and diffusion1, 5 and this is now
well established.3, 6, 7

The fact that there exists a coupling between the molec-
ular intrinsic (or spin) angular momentum and the hydrody-
namical degrees of freedom has long been known.8–13 Re-
cently, the coupling has been shown to reduce the flow rate in
highly confined geometries,14, 15 that it is the mechanism be-
hind flow generation when a rotating electrical field is applied
across a channel,14, 16 and that it can be utilized to perform
plane wave pumping.17 The coupling is described by an ex-
tension of the Navier-Stokes (ENS) equations,9, 10, 13 in which
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the dynamics of both the linear momentum density and the
spin angular momentum density are given. Good agreement
between the ENS equation and molecular dynamics simula-
tion data has been found15, 18 for fluids flowing in nano-slit
pores.

The formulation of the ENS equations allows one to
study additional multiscale correlation phenomena present in
molecular fluids. The framework of such study is a natural
extension of the GNS formalism and involves new correla-
tion functions and wavevector and frequency dependent trans-
port coefficients, not present in the classical theory. In this pa-
per, we formulate the multiscale hydrodynamics as described
by the ENS theory by deriving expressions for the wavevec-
tor dependent correlation functions, treating the transport co-
efficients as constants. These expressions are therefore only
valid in the hydrodynamic regime, that is, for sufficiently
small wavevectors and frequencies. Through the longitudi-
nal autocorrelation function for the spin angular momentum
it is shown that it is possible to define the frequency depen-
dent rotational viscosity and the wavevector and frequency
dependent longitudinal spin viscosity entering the ENS equa-
tions. We refer to this generalized formalism as generalized
extended Navier-Stokes (GENS) theory. In principle, this the-
ory can also be used to treat the frequency and wavevector de-
pendent transverse spin viscosity, however, with some more
effort. We also present molecular dynamics simulations of
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molecular chlorine at three different state points in order to
discuss the multiscale correlation phenomena present in such
fluids in the context of the theory.

The paper is organized as follows. In Sec. II, the GENS
theory is presented. In Sec. III A, we give details about the
molecular dynamics simulations and in Sec. III B we discuss
the results from the simulations in the framework of theory.
Section IV is devoted to a short summary and final remarks.

II. FOUNDATION

Our approach is founded in Onsager’s regression
hypothesis,19 which states that thermally induced fluctuations
decay on average according to the deterministic equations of
motion. Specifically, the decay of the correlations follows the
deterministic description and is therefore dependent on the
fluid transport properties. This approach also enables a direct
comparison of the results with data obtained by equilibrium
molecular dynamics simulations.

In the following, we consider a single component
isotropic molecular fluid with a mass density ρ composed
of uniaxial molecules with moment of inertia per unit mass
I = tr(I)/3, where I is the moment of inertia tensor per unit
mass. In the absence of an external force field and for suf-
ficiently small pressure gradients, the convection term can
be ignored and the linearized form of the ENS equations
read13, 20

ρ
∂u
∂t

= −∇p + (ηv + η0/3 − ηr )∇(∇ · u)

+ (η0 + ηr )∇2u + 2ηr (∇ × �), (1a)

ρI
∂�

∂t
= 2ηr (∇ × u − 2�) + (ζv + ζ0/3 − ζr )∇(∇ · �)

+ (ζ0 + ζr )∇2�, (1b)

where u is the velocity field, � the spin angular velocity field,
and ∇p is the pressure gradient. Compared to the classical
Navier-Stokes equation, the ENS equations involve additional
transport coefficients. The transport coefficients ηv , η0, and ηr

are the bulk, shear, and rotational viscosities, respectively, and
ζv , ζ 0, and ζ r the corresponding spin viscosities.13 It is worth
noting that the dynamic equation for the spin angular veloc-
ity does not depend on the pressure gradient or temperature
gradient, but only on the linear velocity gradient.13 In Fourier
space, the ENS equations are given by

ρ
∂ũ
∂t

= −ikp̃ − (ηv + η0/3 − ηr )k(k · ũ)

−(η0 + ηr )k2ũ + 2ηr ik × �̃, (2a)

ρI
∂�̃

∂t
= 2ηr (ik × ũ − 2�̃) − (ζv + ζ0/3 − ζr )k(k · �̃)

−(ζ0 + ζr )k2�̃, (2b)

where the Fourier transform is defined via

f̃ (k, t) =
∫ ∞

−∞
f (r, t) exp(−ik · r) dr. (3)

We let k = (0, k, 0) such that the components in the velocity
and spin angular velocity fields can be written as purely trans-
verse and longitudinal components. For the velocity field, we
obtain

ρ
∂ũx

∂t
= −(η0 + ηr )k2ũx + 2ηr ik�̃z, (4a)

ρ
∂ũy

∂t
= −ikp̃ − (ηv + 4η0/3)k2ũy, (4b)

ρ
∂ũz

∂t
= −(η0 + ηr )k2ũz − 2ηr ik�̃x , (4c)

where k2 = k · k. The rotational viscosity cancels in Eq. (4b),
implying that the coupling has no effect in the longitudinal
direction for the velocity. For the angular velocity field, the
components are

ρI
∂�̃x

∂t
= − (

4ηr + ζk2
)
�̃x + 2ηr ikũz, (5a)

ρI
∂�̃y

∂t
= − (

4ηr + (ζv + 4ζ0/3)k2
)
�̃y, (5b)

ρI
∂�̃z

∂t
= − (

4ηr + ζk2
)
�̃z − 2ηr ikũx. (5c)

For simplicity, we write

ζ = ζ0 + ζr , (6)

where ζ is denoted the spin viscosity.
In the usual treatment, the dynamical equations are of-

ten Fourier-Laplace transformed with respect to time (yield-
ing frequency dependence rather than time dependence),
which leads to a system of linear algebraic equations of the
form x̃(k, 0) = H(k, ω) · x̂(k, ω), where x̂ is the Fourier and
Fourier-Laplace transform of the hydrodynamic field vector x
(that includes density and energy/temperature), x̃ the Fourier
transformed field at t = 0, and H is the 5 × 5 hydrodynamic
matrix.21 The transforms are defined in Eqs. (3) and (22). In
the case of the ENS theory, the hydrodynamic field vector and
matrix are readily redefined. If we write the field vector as
x = (ρ, T , u′,�′), where T is the temperature, u′ and �′ are
permutations of the velocity and spin fields u′ = (uy, ux, uz)
and �′ = (�y,�x,�z), the hydrodynamic matrix is an 8 × 8
matrix and can be written on a block form

H(k, ω) =
[

HNS
1 (k, ω) 0

0 HENS
2 (k, ω)

]
, (7)

where HNS
1 : (ρ̂(k, ω), T̂ (k, ω), ûy(k, ω)) �→ (ρ̃(k, t = 0),

T̃ (k, t = 0), ũy(k, t = 0)) and has exactly the same entries as
in the classical treatment, see Hansen and McDonald.21 The
second block matrix HENS

2 accounts for the remainder of the
hydrodynamic field in the extended theory and is given by
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HENS
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηtk
2/ρ 0 0 0 −2ηr ik/ρ

0 ηtk
2/ρ 0 2ηr ik/ρ 0

0 0 (4ηr + ζlk
2)/ρI 0 0

0 −2ηr ik/ρI 0 (4ηr + ζk2)/ρI 0

2ηr ik/ρI 0 0 0 (4ηr + ζk2)/ρI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ iωI, (8)

where

ηt = ηr + η0 and ζl = ζv + 4ζ0/3 , (9)

and I is the 5 × 5 unit matrix. We can of course proceed along
this line; however, for the present purpose we will simply an-
alyze Eqs. (4) and (5) and we just listed the hydrodynamic
matrix here for completeness.

We first focus on the dynamics of the transverse veloc-
ity autocorrelation function (TVACF) and the transverse an-
gular velocity autocorrelation function (TAVACF). Due to the
system isotropy, we can choose between two equivalent pairs
of transverse velocity and angular velocity fields; here, we
simply choose the ũx and �̃z components (as they couple,
see Eqs. (4) and (5)). From this, we define the (fluctuating)
field vector x̃(k, t) = (̃ux, �̃z) with 〈̃x(k, t)〉 = 0, and the cor-
responding correlation matrix

1

V
〈̃x(k, t )̃x(−k, 0)〉

= 1

V

[ 〈̃ux(k, t )̃ux(−k, 0)〉 〈̃ux(k, t)�̃z(−k, 0)〉
〈�̃z(k, t )̃ux(−k, 0)〉 〈�̃z(k, t)�̃z(−k, 0)〉

]
, (10)

where 〈. . . 〉 denotes the ensemble average and V is the system
volume. The diagonal elements of this matrix are the TVACF
and TAVACF, which we will write as

C⊥
uu(k, t) = 〈̃ux(k, t )̃ux(−k, 0)〉 1

V
, (11a)

C⊥
��(k, t) = 〈�̃z(k, t)�̃z(−k, 0)〉 1

V
. (11b)

According to Onsager’s regression hypothesis, the dy-
namics of the correlation matrix is governed by the macro-
scopic equations and the solution is

〈̃x(k, t )̃x(−k, 0)〉 = �(t) · 〈̃x(k, 0)̃x(−k, 0)〉 , (12)

where �(t) is the fundamental matrix for the solution to the
differential equation system Eqs. (4a) and (5c). Thus, we get

C⊥
uu(k, t) = kBT

ρ
�⊥

uu(t), (13a)

C⊥
��(k, t) = kBT

2Iρ
�⊥

��(t), (13b)

where the initial values follow from the equipartition theorem
and

�⊥
uu(t) =

(
1

2
− A

)
exp(−λ1t) +

(
1

2
+ A

)
exp(−λ2t),

(14a)

�⊥
��(t) =

(
1

2
+ A

)
exp(−λ1t) +

(
1

2
− A

)
exp(−λ2t).

(14b)

Here, the eigenvalues λ1 and λ2 are given by

λ1,2 = 1

2Iρ

[
4ηr + (ζ + Iηt )k

2

±
√

16η2
r + 8ηr (ζ + I (2ηr − ηt ))k2 + (ζ − Iηt )2k4

]
(15)

and A is

A = 4ηr + (ζ − Iηt )k2

2Iρ(λ1 − λ2)
. (16)

The off-diagonal elements in the correlation matrix, C⊥
u�(k, t)

and C⊥
�u(k, t), do not vanish. This can be understood by eval-

uating the real and imaginary parts of the cross correlation
functions separately under phase space coordinate inversion.
Here, the real part must vanish, but not the imaginary part. It
can also be seen directly from the fundamental matrix where

�⊥
u�(t) = − i2kηr

ρ(λ1 − λ2)

[
exp(−λ1t) − exp(−λ2t)

]
, (17a)

�⊥
�u(t) = i2kηr

ρI (λ1 − λ2)

[
exp(−λ1t) − exp(−λ2t)

]
. (17b)

We will later show that this result is in qualitative agreement
with molecular dynamics data.

The longitudinal angular velocity autocorrelation func-
tion (LAVACF), C

||
��(k, t), is defined as

C
||
��(k, t) = 〈�̃y(k, t)�̃y(−k, 0)〉 1

V
, (18)

and is predicted from Eq. (5b) to decay as a simple single
exponential function

C
||
��(k, t) = 1

2Iρ
exp

[−(4ηr + ζlk
2)

ρI
t

]
. (19)

The rotational viscosity ηr can be found from this correlation
function. To see this, we first form the dynamic equation for
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C
||
��(k, t),22 i.e., multiplying Eq. (5b) with �̃y(−k, 0) and en-

semble averaging gives

ρI
∂C

||
��

∂t
= − (

4ηr + ζlk
2)C

||
��. (20)

Fourier-Laplace transforming and rearranging, we get

χ
||
��(k, ω) = ρI

C
||
��(k, 0) − iωĈ

||
��(k, ω)

Ĉ
||
��(k, ω)

, (21)

where

Ĉ
||
��(k, ω) =

∫ ∞

0
C

||
��(k, t) exp(−iωt) dt, (22)

and where we will assume that χ
||
�� can be decomposed into

two terms

χ
||
��(k, ω) = 4ηr (ω) + ζl(k, ω)k2. (23)

Note that the longitudinal spin viscosity, ζ l, is now wavevec-
tor and frequency dependent, whereas we conjecture that the
rotational viscosity is only frequency dependent since it de-
scribes a local relaxation process. This assumption may not
be strictly valid, but as we will show later it yields a correct
value for the rotational viscosity in the zero frequency limit
and can account for the observed dynamics of the correla-
tion functions. The frequency dependent rotational viscosity
is thus given by

ηr (ω) = 1

4
lim
k→0

χ
||
��(k, ω), (24)

which provides a formal method to calculate the rotational
viscosity directly from the LAVACF. The response function
χ

||
�� also enables one to calculate the longitudinal spin vis-

cosity kernel, i.e., rearranging Eq. (23) we get

ζl(k, ω) = χ
||
��(k, ω) − 4ηr (ω)

k2
= �χ

||
��(k, ω)

k2
, (25)

with k2 
= 0 and where �χ
||
��(k, ω) ≡ χ

||
��(k, ω)

− limk→0 χ
||
��(k, ω). A phenomenological expression

for the frequency and wavevector dependent spin viscosity
ζ (k, ω) is not readily found due to the solution to the
TAVACF. However, in the limit of small wavevector and
inertia an approximate expression can be obtained, as we will
see below.

A. Limit of small inertia and wavevector

In the hydrodynamic limit, one can expand Eq. (15) in
terms of k giving

λ1 = 4ηr + (Iηr + ζ )k2

ρI
+ O(k4) , λ2 = η0k

2

ρ
+ O(k4)

(26)
and

A = 1

2
+ 1

4
Ik2 + O(k4). (27)

For small moment of inertia, I, this means that
λ1 ≈ (4ηr + ζk2)/(ρI) and A ≈ 1/2, and this yields the

0 0,2 0,4

t  [ σ(m/ε)
1/2

 ]

0

1

2

3

4

Φ
Ω

Ω
⊥
(k

,t)
  -

  e
xp

[-
(4

η r +
 ζ

k2 )t
/ρ

I]

k = 0.7 σ-1

k = 2.1 σ-1

k = 3.5 σ-1

k = 4.9 σ-1

k = 6.2 σ-1

x 10
3

FIG. 1. Liquid chlorine. Comparison between Eq. (13b) and the approxi-
mation given by Eq. (28b) for different wavevectors. The units are reduced
molecular dynamics units, σ = 3.3321 Å, ε = 2.46210 × 10−21 J and
m = 35.45 g/mol.

approximate solutions to the TVACF and TAVACF

C⊥
uu(k, t) = kBT

ρ
exp

[
−η0k

2

ρ
t

]
, (k → 0), (28a)

C⊥
��(k, t) = kBT

2Iρ
exp

[
− (4ηr + ζk2)

ρI
t

]
, (k → 0).

(28b)

The approximation to the TAVACF is compared with the
full solution for liquid chlorine in Fig. 1; the transport co-
efficients are listed Table I. It is clearly seen that the abso-
lute difference is very small even for large wavevectors. The
reason why there exists a maximum is that both �⊥

�� and
exp [−(4ηr + ζk2)/ρI] have value 1 at t = 0, and the differ-
ence decreases for larger times since both predictions rapidly
decay to zero here. Naturally, the difference increases for in-
creasing moment of inertia.

Equation (28b) has the same form as Eq. (19), hence, in
the strict limit k = 0 the LAVACF and TAVACFs are identical
and an equivalent expression of Eq. (24) can be given in terms
of the TAVACF.

Interestingly, Eq. (28a) recaptures the result from the
classical Navier-Stokes theory, where the coupling is ignored,
but where no truncation with respect to wavevector is done.
One can think of the classical approach as an atomic picture,

TABLE I. Values of the relevant transport coefficients in the limit of zero
frequency and wavevector. η0 and ζ are evaluated using a Green-Kubo
integral,13 whereas ηr is calculated from Eqs. (24) and (36), see text for de-
tails. The standard errors associated with ηr (third column) in the gas and
fluid phases are in the order of 10−5 and not given in the table. The value
of ηr in the liquid state is in excellent agreement with previously published
results by Moore et al.24 and Delhommelle.35

State point η0 ηr [Eq. (36)] ηr [Eq. (24)] ζ

Gas 0.17 ± 0.02 0.0012 0.0019 ± 0.0006 0.0106 ± 0.0004
Supercrit.
fluid

0.71 ± 0.08 0.037 0.041 ± 0.005 0.056 ± 0.001

Liquid 6.71 ± 0.55 0.42 ± 0.03 0.44 ± 0.04 0.69 ± 0.02
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and we write this result1, 21

CA,⊥
uu (k, t) = kBT

ρ
exp

[
−η0k

2

ρ
t

]
, (29)

where we use superscript A to indicate that this is what would
be obtained in an atomic description (also of a molecular
fluid), see Ref. 23 for a discussion. The reason for the differ-
ence between Eqs. (13a) and (29) lies in that the ENS equa-
tions are based on a description where the molecular pressure
tensor is allowed to have an anti-symmetric part,10 and where
an additional balance equation for the internal molecular
degrees of freedom is introduced. As seen above, the differ-
ence between these two descriptions vanishes in the hydrody-
namic limit, as one would expect.

III. MOLECULAR DYNAMICS OF MOLECULAR
CHLORINE

A. Simulation details

The correlation functions can be evaluated using molecu-
lar dynamics simulations. We will here study molecular chlo-
rine at three different state points, corresponding to a di-
lute fluid/gas, a supercritical fluid, and a liquid. The chlorine
molecule is modelled as in Ref. 24, by letting the two chlo-
rine atoms be bonded via a flexible bond. The total potential
energy in the system is then

U =
∑
pairs

ULJ (rij ) +
∑
bonds

UB(rij ) , (30)

where rij is the distance between chlorine atoms i and j.
The pair potential energy, ULJ, is given by the truncated and
shifted Lennard-Jones potential22

ULJ (rij ) = 4ε
(
(σ/rij )12 − (σ/rij )6

) − UC
LJ if rij ≤ rc ,

(31)
where ε and σ are characteristic energy and length scales,
respectively, UC

LJ the value of the unshifted potential at the
truncation, rc = 2.5σ . If rij > rc, ULJ = 0. We will, as is com-
mon practice and unless otherwise stated, express mechanical
quantities in units of ε, σ and the atomic mass m. For example,
the temperature is T* = kBT/ε, number density is n* = nσ 3

and so forth.25 Furthermore, we shall also not write the as-
terisk for convenience. If one wishes to translate the reduced
units into real units σ = 3.3321 Å, ε = 2.46210 × 10−21 J and
m = 35.45 g/mol, see Ref. 26 and references therein. The pair
interaction only acts between non-bonded atoms. The bond
potential function is given by a harmonic spring potential

UB(rij ) = 1

2
ks(rij − lB)2. (32)

Here, ks = 2500 is the spring constant and lB = 0.63 is the
zero-force bond length. It has been shown that this spring con-
stant keeps the average bond length close to lB with vibrations
that are still slow enough to be accurately integrated forward
in time with the time step used, h = 0.001.24

Initially, 1200 molecules are arranged on a simple lat-
tice with mass density 0.05. The simulation box is then com-
pressed with relatively high compression rate in the x and z
directions and small rate in the y direction. This gives a rect-

angular geometry with dimensions Lx × Ly × Lz, where Lx

= Lz. The geometry allows one to study the system for small
wavevectors k = (0, k, 0), where k = 2πnk/Ly, nk = 1, 2, . . . ,
25. The different state points studied are: (T, ρ) = (0.98,
1.088), (4.0, 0.5), (2.0, 0.1), corresponding to liquid, super-
critical fluid, and gas state points. Because chlorine is a di-
atomic molecule the molecular number density n is simply
half the mass density. The equations of motion are integrated
using the leap-frog algorithm.27 The system is coupled to a
Nosé-Hoover thermostat28, 29 to simulate the canonical (NVT)
ensemble.

After compression and equilibration the wavevector de-
pendent transverse velocity is found from the definition of
the momentum density j(r, t) = ρu(r, t) assuming that we
can ignore the effect of density fluctuations, i.e., the micro-
scopic variable is u(r, t) = (1/ρ)

∑
i Mivi(t)δ(r − ri), where

Mi is the mass of molecule i, vi is the center-of-mass veloc-
ity, and ri is the center-of-mass position vector of molecule
i. Here, we only study a single component liquid, and so the
x-component of the transverse velocity field is

ũx(k, t) = 1

n

N∑
i=1

vx,i(t) exp(−ikyi(t)), (33)

where N is the number of molecules in the simulation
system, vx,i is the x-component velocity, and yi is its y-
component center-of-mass. For isotropic fluids composed
of uniaxial molecules, the relation between the micro-
scopic angular velocity and the angular velocity is I�(r, t)
= (IpV/N )

∑
i �i(t)δ(r − ri),30–32 where Ip is the principal

moment of inertia per unit mass. The transverse spin angular
velocity is thus given by

�̃z(k, t) = 3

2n

N∑
i=1

�z,i(t) exp(−ikyi(t)) , (34)

where �z, i is the spin angular velocity of molecule i and
where we have used the fact that I = 2Ip/3 for uniaxial
molecules. The spin angular velocity is calculated from the
angular momentum sz, i via �z, i = sz, i/Ip with Ip = 0.099.
Likewise, the longitudinal spin angular field is

�̃y(k, t) = 3

2n

N∑
i=1

�y,i(t) exp(−ikyi(t)). (35)

From the definitions (33)–(35), the TVACF, TAVACF, and
LAVACF are then readily computed.

The relevant transport coefficients, η0, ηr, and ζ are also
evaluated in the zero wavevector and zero frequency limit. To
this end we calculate the molecular pressure tensor and the
couple tensor from which the coefficients can be found; we
refer the reader to Refs. 13, 33, and 34 for details. The re-
sults are listed in Table I. One important point to note here
is that the rotational viscosity does not have a Green-Kubo
integral and its evaluation involves an assumption about its
Laplace transform.33 It has been shown6, 14, 24, 33 that the fol-
lowing simple Lorentzian form is a good approximation

ηr (s) = ηr (0)

1 + sτ
, (36)
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FIG. 2. TVACFs and TAVACFs multiplied with the squared number density for molecular chlorine at the three different state points and for small times. For
the gas state point 0.25 < k < 6.25, the fluid state point 0.36 < k < 8.30 and for the liquid state point 0.37 < k < 8.62. t is in units of 1.9 ps. The insets in (d)
and (e) show the TAVACFs for the smallest four wavevectors. Arrows indicate direction of increasing wavevector. Blue filled squares connected with lines are
the predictions from the theory for the lowest wavevector.

where s is the complex Laplace variable, ηr(0) = ηr is the
zero-frequency rotational viscosity, and τ is a characteris-
tic relaxation time. This functional form was first suggested
by Evans and Hanley.33 The procedure involves fitting to
Eq. (36), but the resulting rotational viscosity depends some-
what on the range of s chosen. While the method is satisfac-
tory, it is still desirable to devise a first-principle procedure for
evaluating the rotational viscosity without assuming a func-
tional form for ηr valid over a range of s. Equation (24) shows
that this is possible in the framework of GENS theory.

B. Simulation results

Figure 2 shows the TVACFs and TAVACFs for a range of
wavevectors for all three state points. First, it is noted that
for sufficiently small wavevectors the TVACFs decay, to a
good approximation, as a single exponential function for the
gas and fluid state points. This is in agreement with the ap-

proximation, Eq. (28a). Fits of the data for low wavevector to
Eq. (28a) yield shear viscosities of η0 = 0.17 ± 0.03 and
η0 = 0.64 ± 0.05 for the gas and fluid phases, respectively.
These are within statistical uncertainty the same values ob-
tained in the strictly hydrodynamic regime, see Table I. This
means that the decay of the TVACF is correctly predicted
by the approximative solution and therefore also the classi-
cal Navier-Stokes equation. This is true even for wavelengths
down to around 5.5 nm for the gas and supercritical fluid
phases.

For large wavevectors, the decay of the TVACF no longer
follows a single exponential. A Prony series analysis reveals
that the decay cannot be described satisfactorily as a sum of
two exponentials, as predicted by Eqs. (13a) and (14a). In par-
ticular, this is true for the liquid state point Fig. 2(c). This dis-
crepancy between theory and simulation data is linked to the
short time and spatial correlations present in the fluid, moti-
vating the introduction of wavevector and frequency depen-
dent transport coefficients.4

Downloaded 12 Feb 2013 to 136.186.72.15. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



034503-7 Hansen et al. J. Chem. Phys. 138, 034503 (2013)

0 1 2
t

-0.08

-0.04

0

0.04

0.08

R
e[

 C
Ω

u⊥
(k

, t
) 

x 
n2  ]

(a)

0 1 2
t 

-0.03

0

0.03

0.06

0.09

Im
[ 

C
Ω

u⊥
(k

, t
) 

x 
n2 

 ]

(b)

FIG. 3. Cross correlation function C�u(k, t) at the fluid state point. Arrows indicate direction of increasing wavevector.

The TAVACF for the gas state is shown in Fig. 2(d). The
decay for low wavevectors is characterized by two distinct
regimes (or modes) (i) a wavevector independent fast regime
and (ii) a wavevector dependent slow regime. This behavior
is in qualitative agreement with Eqs. (13b) and (14b), but due
to the values of the transport coefficient the theory cannot ac-
count for the distinct regimes. Therefore, in the limit of small
wavevector, we associate the fast regime with the relaxation
of spin angular momentum since this is a local non-diffusive
process. This interpretation supports the conjecture that the
rotational viscosity is wavevector independent as proposed in
Sec. II. Also, we interpret the decay rate for very short times
to be due to the frequency dependent rotational viscosity, i.e.,
the rotational viscosity increases for increasing frequency in
this region. The wavevector dependent behavior at large times
is a fingerprint of the spin diffusion process, and is captured
reasonably well by Eqs. (13b), (14b), and Eq. (28b). For large
wavevectors, the diffusive mode dominates the decay as ex-
pected from the theory.

In Fig. 2(f), the TAVACF for liquid chlorine is shown.
The anti-correlation for small times highlights the “rattling”
of the molecules. From Table I, we see that the rotational
and spin viscosities are of similar magnitude at zero wavevec-
tor, but it is striking that in the liquid phase, the effect of the
spin diffusion is not observed for any of the wavelengths stud-
ied here. This indicates that, for the liquid, the spin viscosity
quickly goes to zero for increasing wavevectors. As discussed
previously, in the hydrodynamic regime the effect of spin dif-
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FIG. 4. Comparison between the LAVACF and the TAVACF for the fluid
state point.

fusion is negligible, meaning that it has no effect on the decay
of the TAVACF.

In Sec. II, it was seen that the real part of the cross corre-
lation function is zero, whereas the imaginary part was non-
zero. This is confirmed in the molecular dynamics simula-
tions, Fig. 3 where the real part, (a), and imaginary part, (b),
are plotted for the fluid state point.

In the hydrodynamic limit and for small moment of iner-
tia, the LAVACF and TAVACF should have the approximate
same decay, see Eqs. (19) and (28b). Indeed this is also ob-
served in the simulations data. In fact, for the gas and liquid
state points the TAVACF and LAVACFs were indistinguish-
able within statistical error for all wavevectors studied here.
Only for the fluid state point a small, but significant difference
was observed for high values of k; see Fig. (4). This strongly
indicates that ζl(k, ω) ≈ ζ (k, ω).

Table I lists the rotational viscosity found from Eq. (24)
in the limit of zero frequency. Good agreement with the value
obtained by using the Evans and Hanley method33 is ob-
served. In addition, the real part of the frequency dependent
rotational viscosity is shown in Fig. 5. It is worth noting that
ηr has a peak in the gas phase, which supports the assumption
above that ηr(ω) increases at this state point for large frequen-
cies. This also means that the coupling between the molecular
spin and the fluid velocity is increasing for larger frequencies

-2 -1 0 1
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η r(ω
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η r(0
)]
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FIG. 5. Real part of the rotational viscosity for the three different state points
for ω > 0.01 and relative to the zero frequency value, ηr(0), given in Table I
column three. Before performing the Fourier-Laplace transform all data were
averaged and a Hann window36 was applied to the resulting single data set in
order to obtain the best possible curves.
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FIG. 6. Zero frequency longitudinal spin viscosity as a function of wavevec-
tor relative to ζ given in Table I. The kernel for the liquid state point is zero
for all wave vectors shown here. As in Fig. 5 the data were averaged and a
Hann window36 was applied before Fourier-Laplace transforming.

in the case of a dilute system. This clearly significant coupling
enhancement is not observed for the other state points.

Due to statistical noise in the simulations �χ
||
�� ap-

proaches zero slower than k2, see Eq. (25), within statistical
uncertainty, i.e., the expression for the wavevector and fre-
quency dependent spin viscosity cannot be resolved properly
as k2 → 0. This means in practice that the zero wavevec-
tor longitudinal spin viscosity, ζ l, cannot be evaluated using
Eq. (25). However, the expression can be applied here for
non-zero wavevectors and illustrates the points made above.
Figure 6 shows the wavevector dependence of the longitudi-
nal spin viscosity in the limit of zero frequency. For the liquid
state point the spin viscosity is zero for k > 0.75, correspond-
ing to a wavelength of approximately 0.5 nm. This is a direct
consequence of the decay of the TAVACF, which is governed
by the wavevector independent spin relaxation mechanism.
On the other hand, for the two dilute systems it is clearly
seen that the spin diffusion significantly affects the decay of
the LAVACF for large wavevectors. We stress again that this
result is specifically for chlorine and the conclusion cannot
be generalized to other molecular liquids. Another important
point is that the longitudinal spin viscosity kernel appears to
approach the spin viscosity ζ at low wavevectors indicating
once again that ζ ≈ ζ l.

IV. SUMMARY

In this paper, we have formulated the generalized ex-
tended Navier-Stokes theory that includes the coupling be-
tween the spin angular momentum and linear momentum.
This enabled an expression for the rotational viscosity and
longitudinal spin viscosity kernels under the assumption that
the former response function is wavevector independent. For
molecular fluids where the moment of inertia is very small and
in the hydrodynamic limit the theory can be simplified signif-
icantly, and it was shown that the longitudinal and transverse
angular velocity correlation functions feature approximately
the same decay.

The theoretical predictions were tested by molecular dy-
namics simulations of molecular chlorine. In general, the the-
ory captures the overall behavior for small wavevector and
frequencies as expected. However, it does not correctly ac-
count for the detailed relaxation dynamics at small length

and time scales as expected. From the molecular dynam-
ics simulations, we evaluated the longitudinal spin viscos-
ity and rotational viscosity kernels. From this, we noticed
a coupling enhancement at high frequencies at the gas state
point.
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